
Some relation đ
All business education students will be taught easy accounting, finance, Here 99% common suggestions and A + are guaranteed.
Some relation đ
⧍ā§Ļā§¨ā§Š āϏāĻžāϞā§āϰ āĻāϏ. āĻāϏ. āϏāĻŋ āĻĒāϰāĻŋāĻā§āώāĻžāϰ āϏāĻŋāϞā§āĻŦāĻžāϏ (āĻŦā§āϝāĻžāĻŦāϏāĻž āĻļāĻŋāĻā§āώāĻž āĻļāĻžāĻāĻž)
āĻ
āϰā§āĻĨāύā§āϤāĻŋ -ā§§,⧍,ā§Š,ā§Ē,ā§Ŧ,⧝
āĻšāĻŋāϏāĻžāĻŦāĻŦāĻŋāĻā§āĻāĻžāύ -⧍,ā§Š,ā§Ē,ā§Ģ,ā§Ŧ,ā§,⧝,ā§§ā§Ļ
āĻŦā§āϝāĻžāĻŦāϏāĻžā§ āĻāĻĻā§āϝā§āĻ-ā§§,⧍,ā§Š,ā§Ē,ā§Ģ,ā§Ž,⧝,ā§§ā§§
āĻĢāĻŋāύā§āϝāĻžāύā§āϏ āĻŦā§āϝāĻžāĻāĻāĻŋāĻ -ā§§,ā§Š,ā§Ē,ā§Ģ,⧝,ā§§ā§Ļ,ā§§ā§§
āĻ
āĻŦāĻā§/Depreciation:
āĻ
āĻŦāĻāϝāĻŧāĻ āϏā§āĻĨāĻžāϝāĻŧā§ āϏāĻŽā§āĻĒāϤā§āϤāĻŋāϰ āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻāύāĻŋāϤ āĻā§āώāϤāĻŋāĻā§ āĻ
āĻŦāĻāϝāĻŧ āĻŦāϞ⧠āĨ¤
āĻ
āĻŦāĻāϝāĻŧ āύāĻŋāϰā§āϧāĻžāϰāĻŖā§āϰ āĻŦāĻŋāĻŦā§āĻā§āϝ āĻŦāĻŋāώāϝāĻŧāĻā§āϞ⧠āĻšāϞā§āĻ
1. āϏāĻŽā§āĻĒāϤā§āϤāĻŋāϰ āĻā§āϰāϝāĻŧāĻŽā§āϞā§āϝ ( Cost of assets ): āϏāĻŽā§āĻĒāϤā§āϤāĻŋāϰ āύā§āĻ āĻā§āϰāϝāĻŧāĻŽā§āϞā§āϝ, āĻĒāϰāĻŋāĻŦāĻšāĻŖ āĻāϰāĻ, āĻāĻŽāĻĻāĻžāύāĻŋ āĻļā§āϞā§āĻ , āϏāĻāϏā§āĻĨāĻžāĻĒāύ āĻŦā§āϝāϝāĻŧ āĻāϤā§āϝāĻžāĻĻāĻŋāϰ āϝā§āĻāĻĢāϞ āĻšāϞ āϏāĻŽā§āĻĒāϤā§āϤāĻŋāϰ āĻā§āϰāϝāĻŧāĻŽā§āϞā§āϝāĨ¤
2. āĻ
āĻŦāĻāϝāĻŧāϝā§āĻā§āϝ āĻŽā§āϞā§āϝ ( Depreciable cost ): āϏāĻŽā§āĻĒāϤā§āϤāĻŋāϰ āĻā§āϰāϝāĻŧāĻŽā§āϞā§āϝ āĻšāϤ⧠āĻāĻā§āύāĻŦāĻļā§āώ āĻŽā§āϞā§āϝ āĻŦāĻžāĻĻ āĻĻāĻŋāϞ⧠āĻ
āĻŦāĻāϝāĻŧāϝā§āĻā§āϝ āĻŽā§āϞā§āϝ āĻĒāĻžāĻāϝāĻŧāĻž āϝāĻžāϝāĻŧāĨ¤ Depreciable cost = Cost â Salvage value (S.V)
3. āϏāĻŽā§āĻĒāϤā§āϤāĻŋāϰ āĻāύā§āĻŽāĻžāύāĻŋāĻ āĻāϝāĻŧā§āώā§āĻāĻžāϞ ( Estimated life of the assets ): āĻā§āύ āϏāĻŽā§āĻĒāϤā§āϤāĻŋ āĻĨā§āĻā§ āĻĒā§āϰāĻžāĻĒā§āϤ āĻŽā§āĻ āϏā§āĻŦāĻŋāϧāĻžāĻā§ āϏāĻŽā§āĻĒāϤā§āϤāĻŋāϰ āĻāύā§āĻŽāĻžāύāĻŋāĻ āĻāϝāĻŧā§āώā§āĻāĻžāϞ āĻšāĻŋāϏā§āĻŦā§ āĻŦāĻŋāĻŦā§āĻāύāĻž āĻāϰāĻž āĻšāϝāĻŧāĨ¤ āϝā§āĻŽāύāĻ āĻŦāĻāϰ , āĻā§āĻĒāĻžāĻĻāύ āĻāĻāĻ , āĻŽāĻžāĻāϞ āĻāϤā§āϝāĻžāĻĻāĻŋāĨ¤
4. āϏāĻŽā§āĻĒāϤā§āϤāĻŋāϰ āĻāĻā§āύāĻŦāĻļā§āώ āĻŽā§āϞā§āϝ (Residual value of the assets ): āĻāĻžāϰā§āϝāĻāϰ āĻāϝāĻŧā§āώā§āĻāĻžāϞ āĻļā§āώ⧠āĻā§āύ āϏā§āĻĨāĻžāϝāĻŧā§ āϏāĻŽā§āĻĒāϤā§āϤāĻŋ āĻŦāĻŋāĻā§āϰāϝāĻŧ āĻāϰ⧠āϝ⧠āĻŽā§āϞā§āϝ āĻĒāĻžāĻāϝāĻŧāĻž āϝāĻžāĻŦā§ āĻŦāϞ⧠āϧāĻžāϰāύāĻž āĻāϰāĻž āĻšāϝāĻŧ āϤāĻžāĻ āϏāĻŽā§āĻĒāϤā§āϤāĻŋāϰ āĻāĻā§āύāĻŦāĻļā§āώ āĻŽā§āϞā§āϝāĨ¤
āĻ
āĻŦāĻāϝāĻŧ āύāĻŋāϰā§āϧāĻžāϰāĻŖ āĻĒāĻĻā§āϧāϤāĻŋāĻ
1. Straight line method ( āϏāϰāϞ āϰā§āĻāĻŋāĻ āĻĒāĻĻā§āϧāϤāĻŋ )
2. Declining balance method / Diminishing balance Method (āĻā§āϰāĻŽāĻšā§āϰāĻžāϏāĻŽāĻžāύ āĻā§āϰ āĻĒāĻĻā§āϧāϤāĻŋ )
3. Double- decline balance method ( āĻĻā§āĻŦāĻŋāĻā§āĻŖ āĻšā§āϰāĻžāϏāĻĒā§āϰāĻžāĻĒā§āϤ āĻā§āϰ āĻĒāĻĻā§āϧāϤāĻŋ )
4. Sum of the years digit method ( āĻŦāϰā§āώ āϏāĻāĻā§āϝāĻžāϰ āϏāĻŽāώā§āĻāĻŋ āĻĒāĻĻā§āϧāϤāĻŋ )
5. Insurance policy method (āĻŦā§āĻŽāĻžāĻĒāϤā§āϰ āĻĒāĻĻā§āϧāϤāĻŋ )
6. Depreciation fund method ( āĻ
āĻŦāĻāϝāĻŧ āĻāĻžāύā§āĻĄāĻžāϰ āĻĒāĻĻā§āϧāϤāĻŋ )
7. Annuity method ( āϏāĻŽāĻāĻŋāϏā§āϤāĻŋ āĻŦāĻžāώāĻŋāĻā§ āĻĒāĻĻā§āϧāϤāĻŋ )
8. Revaluation method ( āĻĒā§āύāϰā§āĻŽā§āϞā§āϝāĻžāϝāĻŧāύ āĻĒāĻĻā§āϧāϤāĻŋ )
9. Production method ( āĻā§āĻĒāĻžāĻĻāύ āĻĒāĻĻā§āϧāϤāĻŋ )
10. Activity Hour Rate method ( āĻāϰā§āĻŽ āĻāύā§āĻāĻž āĻšāĻžāϰ āĻĒāĻĻā§āϧāϤāĻŋ )
11. Machine Hour Rate method ( āϝāύā§āϤā§āϰ āĻāύā§āĻāĻžāĻšāĻžāϰ āĻĒāĻĻā§āϧāϤāĻŋ )
12. Replacement method ( āĻĒā§āϰāϤāĻŋāϏā§āĻĨāĻžāĻĒāύ āĻŦā§āϝāϝāĻŧ āĻĒāĻĻā§āϧāϤāĻŋ )
13. Mileage method ( āĻŽāĻžāĻāϞ āĻšāĻŋāϏāĻžāĻŦā§ āĻĻā§āϰā§āĻā§āϝ āĻĒāĻĻā§āϧāϤāĻŋ )
14. Depletion Unit method ( āĻā§āώāϝāĻŧāĻžāύā§āĻĒāĻžāϤāĻŋāĻ āĻĒāĻĻā§āϧāϤāĻŋ )
1. Straight line method ( āϏāϰāϞ āϰā§āĻāĻŋāĻ āĻĒāĻĻā§āϧāϤāĻŋ ):
āϝ⧠āĻĒāĻĻā§āϧāϤāĻŋāϤ⧠āĻĒā§āϰāϤā§āϝā§āĻ āĻŦāĻāϰ āĻ
āĻŦāĻāϝāĻŧā§āϰ āĻĒāϰāĻŋāĻŽāĻžāύ āϏāĻŽāĻžāύ āĻšāϝāĻŧ āϤāĻžāĻā§ Straight line method ( āϏāϰāϞ āϰā§āĻāĻŋāĻ āĻĒāĻĻā§āϧāϤāĻŋ ) āĻŦāϞā§āĨ¤
Example: 1
One asset purchase price Tk.25000, Estimated life 5 years. Salvage value is Tk.5000. Depreciation Rate 20%. Depreciation charge is straight line Method. (āϏāϰāϞ āϰā§āĻāĻŋāĻ
āĻšāĻŋāϏāĻžāĻŦāĻŦāĻŋāĻā§āĻāĻžāύ
āĻāϰā§āĻĨāĻŋāĻ āĻšāĻŋāϏāĻžāĻŦ āϏāĻāϰāĻā§āώāĻŖ, āĻŦāĻŋāĻļā§āϞā§āώāĻŖ āĻ āĻĒā§āϰāϤāĻŋāĻŦā§āĻĻāύ āĻĒā§āϰāĻŖāϝāĻŧāύ āĻŦā§āϝāĻŦāϏā§āĻĨāĻž
āĻšāĻŋāϏāĻžāĻŦāĻŦāĻŋāĻā§āĻāĻžāύ āĻšāϞ āĻ
āϰā§āĻĨāύā§āϤāĻŋāĻ āĻĒā§āϰāϤāĻŋāώā§āĻ āĻžāύ āϝā§āĻŽāύ āĻŦā§āϝāĻŦāϏāĻžāϝāĻŧ āĻŦāĻž āϏāĻāĻāĻŦāĻĻā§āϧ āĻĻāϞā§āϰ āĻāϰā§āĻĨāĻŋāĻ āĻ āĻ
āύāĻžāϰā§āĻĨāĻŋāĻ āϤāĻĨā§āϝ āĻĒāϰāĻŋāĻŽāĻžāĻĒāĻŖ, āĻĒā§āϰāĻā§āϰāĻŋāϝāĻŧāĻžāĻāĻžāϤāĻāϰāĻŖ āĻ āϝā§āĻāĻžāϝā§āĻā§āϰ āĻŽāĻžāϧā§āϝāĻŽāĨ¤ āĻāϧā§āύāĻŋāĻ āĻļāĻžāĻāĻžāĻāĻŋ āĻĒā§āϰāϤāĻŋāώā§āĻ āĻŋāϤ āĻšāϝāĻŧā§āĻāĻŋāϞ āĻŦā§āύā§āĻĄāĻŋāĻā§āĻ āĻāĻāϰā§āϞāĻā§āĻāĻŋāĻ āĻāϰā§āϤā§āĻ ā§§ā§Ēā§Ģā§Ž āϏāĻžāϞā§, (āĻāϤāĻžāϞāĻŋāϝāĻŧāĻ āĻŦā§āύā§āĻĻā§āϤā§āϤ āĻāĻā§āϰā§āĻāĻŋ; ā§§ā§Ēā§§ā§Ŧ-ā§§ā§Ēā§Ŧ⧝), āĻŦā§āϝāĻŦāϏāĻžāϝāĻŧā§, āĻ
āϰā§āĻĨāύā§āϤāĻŋāĻŦāĻŋāĻĻ, āĻŦāĻŋāĻā§āĻāĻžāύā§, āĻā§āĻāύā§āϤāĻŋāĻ āĻāĻŦāĻ āĻŽāĻžāύāĻŦāϏā§āĻŦā§ āĻĻā§āĻŦā§āϰāĻāύāĻŋāĻ (āĻā§āϰā§āϝāĻŧā§āĻļāĻŋāϝāĻŧāĻž) āĻāĻŦāĻ āĻāϤāĻžāϞāĻŋāϝāĻŧāĻžāύ āĻāĻŖāĻŋāϤāĻŦāĻŋāĻĻ āϞā§āĻāĻž āĻĒā§āϝāĻžāϏāĻŋāĻāϞāĻŋ ā§§ā§Ē⧝ā§Ē āϏāĻžāϞ⧠āĻŦā§āϝāĻŦāϏāĻžāϝāĻŧā§āϰ āĻāĻžāώāĻž āĻšāĻŋāϏā§āĻŦā§ āϏā§āĻŦā§āĻā§āϤ, āĻšāĻŋāϏāĻžāĻŦāĻŦāĻŋāĻā§āĻāĻžāύ āĻĒā§āϰāϤāĻŋāώā§āĻ āĻžāύā§āϰ āĻāϰā§āĻĨāĻŋāĻ āĻāϰā§āĻŽāĻāĻžāύā§āĻĄā§āϰ āĻĢāϞāĻžāĻĢāϞ āĻĒāϰāĻŋāĻŽāĻžāĻĒ āĻāϰ⧠āĻāĻŦāĻ āĻāĻ āϤāĻĨā§āϝ āĻŦāĻŋāĻāĻŋāύā§āύ āϧāϰāύā§āϰ āĻŦā§āϝāĻŦāĻšāĻžāϰāĻāĻžāϰā§, āϝā§āĻŽāύ â āĻŦāĻŋāύāĻŋāϝāĻŧā§āĻāĻāĻžāϰā§, āĻāĻŖāĻĻāĻžāϤāĻž, āĻŦā§āϝāĻŦāϏā§āĻĨāĻžāĻĒāύāĻž āĻāĻŦāĻ āύāĻŋāϝāĻŧāύā§āϤā§āϰāĻ āϏāĻāϏā§āĻĨāĻžāϰ āĻāĻžāĻā§ āĻĻāĻŋāϝāĻŧā§ āĻĨāĻžāĻā§āĨ¤ āĻšāĻŋāϏāĻžāĻŦāĻŦāĻŋāĻā§āĻāĻžāύ āĻāϰā§āĻāĻžāĻāĻžāϰā§āĻāĻŖāĻā§ āĻšāĻŋāϏāĻžāĻŦāĻŦāĻŋāĻĻ āĻŦāϞāĻž āĻšāϝāĻŧāĨ¤ āĻšāĻŋāϏāĻžāĻŦāĻŦāĻŋāĻā§āĻāĻžāύ āĻ āĻāϰā§āĻĨāĻŋāĻ āĻĒā§āϰāϤāĻŋāĻŦā§āĻĻāύ āĻāϰāĻŖ āĻĒā§āϰāĻžāϝāĻŧāĻļāĻ āϏāĻŽāĻžāϰā§āĻĨāĻ āĻšāĻŋāϏā§āĻŦā§ āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻāϰāĻž āĻšāϝāĻŧāĨ¤
āĻĒāĻŖā§āϝ āĻā§āϰāϝāĻŧ, āĻŦāĻŋāĻā§āϰāϝāĻŧ, āĻŽāĻā§āĻĻāĻāϰāĻŖ, āĻšāĻŋāϏāĻžāĻŦ āύāĻŋāĻāĻžāĻļ, āĻŽāĻžāύāĻŦ āϏāĻŽā§āĻĒāĻĻ āĻŦā§āϝāĻŦāϏā§āĻĨāĻžāĻĒāύāĻžāϏāĻš āĻŦā§āϝāĻŦāϏāĻžāϝāĻŧā§āϰ āĻ
āύā§āϝāĻžāύā§āϝ āĻšāĻŋāϏāĻžāĻŦ āϏāĻāϰāĻā§āώāύā§āϰ āĻāĻāĻŋāϞ āĻāĻŦāĻ āĻā§āϞāĻžāύā§āϤāĻŋāĻāϰ āĻāĻžāĻāĻā§āϞ⧠āĻāĻāĻāĻžāϞ āĻāĻŽā§āĻĒāĻŋāĻāĻāĻžāϰ āϏāĻĢāĻāĻāϝāĻŧā§āϝāĻžāϰā§āϰ āϏāĻžāĻšāĻžāϝā§āϝ⧠āĻ
āύā§āĻ āĻĻā§āϰā§āϤāϤāĻžāϰ āϏāĻžāĻĨā§ āĻāϰāĻž āϝāĻžāϝāĻŧāĨ¤ āĻāĻ āϏāĻĢāĻāĻāϝāĻŧā§āϝāĻžāϰāĻā§āϞ⧠āϏāĻāϰāĻžāĻāϰ āĻĒā§āϰāϤā§āϝā§āĻāĻāĻŋ āĻĒā§āϰāϧāĻžāύ āĻāĻžāϰā§āϝāĻā§āϰāĻŽā§āϰ āϏāĻžāĻĨā§ āĻ
āύā§āϤāϰā§āύāĻŋāĻšāĻŋāϤāĻāĻžāĻŦā§ āϏāĻāϝā§āĻā§āϤ āĻĨāĻžāĻā§; āĻāϤ⧠āĻāϰ⧠āĻāĻāĻāĻŋ āϤāĻĨā§āϝ āĻĒā§āϰāĻŦā§āĻļ āĻāϰāĻžāϞ⧠āϤāĻž āϏāĻŽāϏā§āϤ āĻšāĻŋāϏāĻžāĻŦā§ āĻ
āύā§āϤāϰā§āĻā§āĻā§āϤ āĻšāϝāĻŧā§ āϝāĻžāϝāĻŧāĨ¤ āĻāĻ āϏāĻĢāĻāĻāϝāĻŧā§āϝāĻžāϰāĻā§āϞ⧠āĻĻāĻŋāϝāĻŧā§ āĻāĻāĻāύ āĻāϰā§āĻŽā§ āĻĒā§āϰāĻžāϝāĻŧ ⧍ā§Ļā§Ļ āĻŽāĻžāύā§āώā§āϰ āĻāĻžāĻ āĻāĻāĻžāĻ āĻāϰ⧠āĻĢā§āϞāϤ⧠āĻĒāĻžāϰā§āĨ¤ āĻāĻ āϧāϰāύā§āϰ āĻāĻāĻžāĻāύā§āĻāĻŋāĻ āϏāĻĢāĻāĻāϝāĻŧā§āϝāĻžāϰ āĻĒā§āϰāϤāĻŋāώā§āĻ āĻžāύā§āϰ āĻāĻžāĻ āĻ
āύā§āĻ āϏāĻšāĻ āĻāϰ⧠āĻĻā§āϝāĻŧ āĻāĻŦāĻ āĻāϤ⧠āĻāϰ⧠āĻĒāĻŖā§āϝ āĻ āϏā§āĻŦāĻžāϰ āĻā§āĻŖāĻāϤ āĻŽāĻžāύ āĻŦā§āĻĻā§āϧāĻŋ āĻāĻŦāĻ āĻ
āϰā§āĻĨ āϏāĻžāĻļā§āϰāϝāĻŧ āĻšāϝāĻŧāĨ¤
āĻšāĻŋāϏāĻžāĻŦāĻŦāĻŋāĻā§āĻāĻžāύ āĻĒā§āϰāĻžāϝāĻŧ āĻšāĻžāĻāĻžāϰ āĻŦāĻāϰ āϧāϰ⧠āĻāϰā§āĻāĻŋāϤ āĻāĻāĻāĻŋ āĻŦāĻŋāĻĻā§āϝāĻžāĨ¤ āĻĒā§āϰāĻžāĻā§āύ āĻŽā§āϏā§āĻĒāĻā§āĻŽāĻŋāϝāĻŧāĻž āϏāĻā§āϝāϤāĻžāϝāĻŧ āĻā§āĻĒāĻžāĻĻāĻŋāϤ āĻĢāϏāϞ āĻāĻŦāĻ āĻŽāύā§āĻĻāĻŋāϰ⧠āϏāĻāĻā§āĻšā§āϤ āĻļāϏā§āϝā§āϰ āĻšāĻŋāϏāĻžāĻŦ āϰāĻžāĻāĻžāϰ āĻāύā§āϝ āĻšāĻŋāϏāĻžāĻŦāĻŦāĻŋāĻā§āĻāĻžāύā§āϰ āĻĒā§āϰāĻžāĻā§āύāϤāĻŽ āĻĒāύā§āĻĨāĻžāĻā§āϞ⧠āĻŦā§āϝāĻŦāĻšā§āϤ āĻšāϤā§āĨ¤
āĻšāĻŋāϏāĻžāĻŦāĻŦāĻŋāĻā§āĻāĻžāύā§āϰ āĻā§āĻĒāϤā§āϤāĻŋ:
āĻāĻ āĻŦā§āĻā§āĻāĻžāύāĻŋāĻ āĻšāĻŋāϏāĻžāĻŦāĻļāĻžāϏā§āϤā§āϰā§āϰ āĻĒā§āϰāĻāϞāύ āĻāϰā§āĻāĻŋāϞā§āύ āĻāϤāĻžāϞā§āϝāĻŧ āϰā§āύā§āϏāĻžāĻāϰ āĻāĻŖāĻŋāϤāĻā§āĻ āĻ āϧāϰā§āĻŽāϝāĻžāĻāĻ āϞā§āĻāĻž āĻĒā§āϝāĻžāϏāĻŋāĻāϞāĻŋāĨ¤ āϞā§āĻāĻž āĻĒā§āϝāĻžāϏāĻŋāĻāϞāĻŋ āĻāĻŋāϞā§āύ āϞāĻŋāĻāύāĻžāϰā§āĻĻā§ āĻĻāĻž āĻāĻŋāĻā§āĻāĻŋâāϰ āĻāĻāĻāύ āύāĻŋāĻāĻāϤāĻŽ āĻŦāύā§āϧ⧠āĻ āĻā§āĻšāĻļāĻŋāĻā§āώāĻ āĻāĻŦāĻ āĻāϤāĻžāϞā§āϝāĻŧ āύāĻžāĻŦāĻŋāĻ āĻā§āϰāĻŋāϏā§āĻā§āĻĢāĻžāϰ āĻāϞāĻŽā§āĻŦāĻžāϏ āĻāϰ āϏāĻŽāϏāĻžāĻŽāϝāĻŧāĻŋāĻāĨ¤ āϞā§āĻāĻž āĻĒā§āϝāĻžāϏāĻŋāĻāϞāĻŋāϰ ā§§ā§Ē⧝ā§Ē āϏāĻžāϞā§āϰ āĻŽā§āϞāĻĒāĻžāĻ āϞā§āϝāĻžāĻāĻŋāύ āĻāĻžāώāĻžāϝāĻŧ (āĻā§āϰā§āĻā§āϏāĻā§) (summa de Arithmatica Geometria,proportionet proportionalita) āϏā§āĻŽā§āĻŽāĻž āĻĄāĻŋ āĻāϰāĻŋāĻĨāĻŋāĻŽā§āĻāĻŋāĻāĻž, āĻāĻŋāĻāĻŽā§āĻā§āϰāĻŋāĻāĻž, āĻĒā§āϰāĻĒā§āϰāϏā§āύāĻŋāϝāĻŧā§āĻ, āĻĒā§āϰā§āĻĒā§āϰāϏāύāĻžāϞāĻŋāĻāĻžāϤ⧠āĻāĻ āĻĒā§āϝāĻžāϏāĻŋāĻāϞāĻŋ āĻŦāϰā§āĻŖāύāĻž āĻāϰā§āĻāĻŋāϞā§āύ āĻĻā§'āϤāϰāĻĢāĻž āĻĻāĻžāĻāĻŋāϞāĻž āĻĒāĻĻā§āϧāϤāĻŋ āϝā§āĻāĻž āύāĻŋāĻļā§āĻāĻŋāϤ āĻāϰ⧠āĻ
āϰā§āĻĨāύā§āϤāĻŋāĻ āϤāĻĨā§āϝ āϰā§āĻāϰā§āĻĄ āĻāϰāĻž āĻšāϝāĻŧ āĻĻāĻā§āώāϤāĻžāϰ āϏāĻžāĻĨā§ āĻāĻŦāĻ āϝāĻĨāĻžāϝāĻĨāĻāĻžāĻŦā§āĨ¤ āϞā§āĻāĻž āĻĒā§āϝāĻžāϏāĻŋāĻāϞāĻŋāϰ āϏā§āĻŦāϰā§āĻŖāϏā§āϤā§āϰ āĻĻā§āĻŦāĻžāϰāĻž āĻā§āĻŦ āϏāĻšāĻā§āĻ āϏāĻŽā§āĻĒāĻĻ, āĻĻāĻžāϝāĻŧ, āĻāϝāĻŧ, āĻŦā§āϝāĻžāϝāĻŧ āĻāϰ āĻĄā§āĻŦāĻŋāĻ-āĻā§āϰā§āĻĄāĻŋāĻ āύāĻŋāϰā§āĻŖāϝāĻŧ āĻāϰāĻž āϝāĻžāϝāĻŧāĨ¤
āĻāϤāĻŋāĻšāĻžāϏ:
āĻŽā§āϞ āύāĻŋāĻŦāύā§āϧ: āĻšāĻŋāϏāĻžāĻŦāϰāĻā§āώāĻŖā§āϰ āĻāϤāĻŋāĻšāĻžāϏ:
āĻ
āϤāĻŋ āĻĒā§āϰāĻžāĻā§āύāĻāĻžāϞ āĻĨā§āĻā§ āĻŽāĻžāύā§āώ āϞā§āύāĻĻā§āύā§āϰ āĻĒā§āϰāϝāĻŧā§āĻāύā§āϝāĻŧāϤāĻž āĻ
āύā§āĻāĻŦ āĻāϰ⧠āĻ āĻŦāĻŋāĻāĻŋāύā§āύāĻāĻžāĻŦā§ āϤāĻž āϏāĻāϰāĻā§āώāĻŖā§āϰ āĻāĻĒāĻžāϝāĻŧ āĻŦā§āϰ āĻāϰ⧠āĨ¤ āĻĻāĻā§āώāĻŋāĻŖ āĻāĻĢā§āϰāĻŋāĻāĻžāϰ āĻāĻāĻāĻŋ āĻĒā§āϰāĻžāĻā§āύ āĻā§āĻšāĻž āĻĨā§āĻā§ āĻāĻĻā§āϧāĻžāϰāĻā§āϤ āĻāĻŋāĻā§ āϞāĻŋāĻĒāĻŋ āĻĨā§āĻā§ āĻŦā§āĻāĻž āϝāĻžāϝāĻŧ āϝ⧠āĻĒā§āϰāĻžāϝāĻŧ ā§ā§Ŧ,ā§Ļā§Ļā§Ļ āĻŦāĻāϰ āĻāĻā§āĻ āĻŽāĻžāύā§āώ āĻšāĻŋāϏāĻžāĻŦ āϏāĻāϰāĻā§āώāĻŖā§āϰ āĻā§āώā§āĻāĻž āĻāĻžāϞāĻŋāϝāĻŧā§ āĻāĻŋāϝāĻŧā§āĻāĻŋāϞāĨ¤ āĻāĻāĻŋ āĻāĻŋāϞ āĻšāĻŋāϏāĻžāĻŦāĻŦāĻŋāĻā§āĻāĻžāύā§āϰ āĻāϤāĻŋāĻšāĻžāϏ⧠āϏāĻŦāĻā§āϝāĻŧā§ āĻĒā§āϰāĻžāĻā§āύ āύāĻŋāĻĻāϰā§āĻļāύāĨ¤
āĻšāĻŋāϏāĻžāĻŦāĻŦāĻŋāĻā§āĻāĻžāύā§āϰ āĻ
āύā§āϝāϤāĻŽ āĻā§āϰā§āϤā§āĻŦāĻĒā§āϰā§āĻŖ āύāĻŋāĻĻāϰā§āĻļāύāĻā§āϞāĻŋ āĻĒāĻžāĻāϝāĻŧāĻž āϝāĻžāϝāĻŧ āĻŦā§āϝāĻžāĻŦāĻŋāϞāύāĻŋāϝāĻŧ, āĻāĻļāĻŋāϰā§āϝāĻŧ āĻ āϏā§āĻŽā§āϰā§āϝāĻŧ āϏāĻā§āϝāϤāĻžāϝāĻŧāĨ¤ āĻāĻ āϏāĻā§āϝāϤāĻžāĻā§āϞ⧠āĻĒā§āϰāĻžāϝāĻŧ ā§,ā§Ļā§Ļā§Ļ āĻŦāĻāϰ āĻĒā§āϰā§āĻŦā§ āĻŽā§āϏā§āĻĒāĻā§āĻŽāĻŋāϝāĻŧāĻž āύāĻĻā§āϰ āϤā§āϰ⧠āĻāĻĄāĻŧā§ āĻāĻ ā§ āĻāĻŦāĻ āĻŦāĻŋāĻāĻžāĻļ āϞāĻžāĻ āĻāϰā§āĨ¤ āĻāĻā§āϤ āϏāĻā§āϝāϤāĻžāϰ āϞā§āĻā§āϰāĻž āĻļā§āϧā§āĻŽāĻžāϤā§āϰ āĻā§āώāĻŋ āĻā§āĻĒāĻžāĻĻāύ āĻĒāϰāĻŋāĻŽāĻžāĻĒ āĻāϰāϤā§āĻ āĻšāĻŋāϏāĻžāĻŦā§āϰ āĻāĻĻāĻŋāĻŽ āĻĒāĻĻā§āϧāϤāĻŋāĻā§āϞ⧠āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻāϰāϤāĨ¤ āϏā§āĻ āĻāĻĻāĻŋāĻŽ āĻĒāĻĻā§āϧāϤāĻŋāĻā§āϞ⧠āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻāϰ⧠āĻĢāϏāϞ āĻāϤ āĻŦāĻāϰā§āϰ āϤā§āϞāύāĻžāϝāĻŧ āĻāĻŽ āĻšāϝāĻŧā§āĻā§ āύāĻž āĻŦā§āĻļāĻŋ āĻšāϝāĻŧā§āĻā§ āϤāĻž āύāĻŋāϰā§āĻŖāϝāĻŧ āĻāϰāĻž āϝā§āϤā§āĨ¤ āĻā§āĻĒāĻžāĻĻāĻŋāϤ āĻĢāϏāϞā§āϰ āĻāĻāĻāĻŋ āĻ
āĻāĻļ āĻŽāύā§āĻĻāĻŋāϰ⧠āĻĻāĻžāύ āĻāϰāϤ⧠āĻšāϤā§āĨ¤ āĻāϰ āĻā§ āĻāϤā§āĻā§āĻā§ āĻĻāĻžāύ āĻāϰāϞ āĻŽāύā§āĻĻāĻŋāϰ āĻāϰā§āϤā§āĻĒāĻā§āώ āϤāĻž āĻĻā§āĻāϝāĻŧāĻžāϞ⧠āĻāĻŋāĻšā§āύā§āϰ āĻŽāĻžāϧā§āϝāĻŽā§ āϞāĻŋāĻā§ āϰāĻžāĻāϤā§āĨ¤ āĻāĻ āĻĒā§āϰāĻžāĻā§āύ āĻĻā§āĻāϝāĻŧāĻžāϞ āĻā§āĻĻāĻžāĻāĻā§āϞā§āĻā§āĻ āĻšāĻŋāϏāĻžāĻŦāĻŦāĻŋāĻā§āĻāĻžāύā§āϰ āĻĒā§āϰāĻžāĻā§āύ āĻĒā§āϰāĻā§āώā§āĻāĻž āĻŦāϞāĻž āϝā§āϤ⧠āĻĒāĻžāϰā§āĨ¤
āĻļā§āϰā§āĻŖā§ :
āĻāϰā§āĻĨāĻŋāĻ āĻšāĻŋāϏāĻžāĻŦāĻŦāĻŋāĻā§āĻāĻžāύ:
āύāĻŋāĻŽā§āύ āĻ āĻāĻā§āĻ āĻŽā§āϞā§āϝāĻšā§āϰāĻžāϏ āĻ āĻŽā§āϞā§āϝāĻŦā§āĻĻā§āϧāĻŋāĻāĻžāϞ⧠āύāĻžāĻŽāĻŽāĻžāϤā§āϰ āĻāϰā§āĻĨāĻŋāĻ āĻāĻāĻā§ (āĻāϤāĻŋāĻšāĻžāϏāĻŋāĻ āĻŦā§āϝāϝāĻŧ āĻšāĻŋāϏāĻžāĻŦāĻŦāĻŋāĻā§āĻāĻžāύ āĻŦāĻž āĻāĻŦā§āϝāϝāĻŧāĻšāĻŋ) āĻāĻŋāĻāĻŦāĻž āĻāύā§āϤāϰā§āĻāĻžāϤāĻŋāĻ āĻāϰā§āĻĨāĻŋāĻ āĻĒā§āϰāϤāĻŋāĻŦā§āĻĻāύā§āϰ āύā§āϤāĻŋāĻŽāĻžāϞāĻž (International Financial Reporting Standards) āĻ
āύā§āϝāĻžāϝāĻŧā§ āĻ
āϤā§āϝā§āĻā§āĻ āĻŽā§āϞā§āϝāĻŦā§āĻĻā§āϧāĻŋāĻāĻžāϞ⧠āϧā§āϰā§āĻŦ āĻā§āϰāϝāĻŧāĻā§āώāĻŽāϤāĻžāϏāĻŽā§āĻĒāύā§āύ āĻāĻāĻā§ (āϧā§āϰā§āĻŦ āĻā§āϰāϝāĻŧāĻā§āώāĻŽāϤāĻž āĻšāĻŋāϏāĻžāĻŦāĻŦāĻŋāĻā§āĻāĻžāύ āĻŦāĻž āϧā§āϰā§āĻā§āϰāϝāĻŧāĻšāĻŋ) āĻ
āϰā§āĻĨāĻžāϝāĻŧāĻŋāϤ āĻŽā§āϞāϧāύ āϰāĻā§āώāĻŖāĻžāĻŦā§āĻā§āώāĻŖāĻā§ āĻāϰā§āĻĨāĻŋāĻ āĻšāĻŋāϏāĻžāĻŦāĻŦāĻŋāĻā§āĻāĻžāύ āĻŦāϞāĻž āĻšāϝāĻŧāĨ¤ āĻāϰā§āĻĨāĻŋāĻ āĻšāĻŋāϏāĻžāĻŦāĻŦāĻŋāĻā§āĻāĻžāύ āĻāĻŦā§āϝāϝāĻŧāĻšāĻŋ āĻŦāĻž āϧā§āϰā§āĻā§āϰāϝāĻŧāĻšāĻŋ āĻ
āύā§āϏāĻžāϰ⧠āĻĒā§āϰāϤāĻŋāώā§āĻ āĻžāύā§āϰ āĻāϰā§āĻĨāĻŋāĻ āϤāĻĨā§āϝāĻžāĻŦāϞāĻŋāϰ āĻĒā§āϰāϤāĻŋāĻŦā§āĻĻāύ āϤā§āϰāĻŋ āĻāϰ⧠āϤāĻž āĻŦāĻšāĻŋāĻāϏā§āĻĨ āĻŦā§āϝāĻŦāĻšāĻžāϰāĻāĻžāϰā§āĻĻā§āϰ, āϝā§āĻŽāύ āĻŦāĻŋāύāĻŋāϝāĻŧā§āĻāĻāĻžāϰā§, āĻĒāϰāĻŋāĻāĻžāϞāĻāĻŦā§āύā§āĻĻ āĻāĻŦāĻ āϏāϰāĻŦāĻžāϰāĻšāĻāĻāĻŖā§āϰ āύāĻŋāĻāĻ āĻāĻĒāϏā§āĻĨāĻžāĻĒāύ āĻāϰāĻžāϰ āĻāĻĒāϰ āĻā§āϰā§āϤā§āĻŦāĻžāϰā§āĻĒ āĻāϰā§āĨ¤ āĻāĻāĻŋ āϏāϰā§āĻŦāĻāύāĻā§āϰāĻžāĻšā§āϝ āĻšāĻŋāϏāĻžāĻŦāĻŦāĻŋāĻā§āĻāĻžāύ āύā§āϤāĻŋāĻŽāĻžāϞāĻž āĻŦāĻž āϏāĻšāĻŋāύ⧠(Generally accepted accounting principles or GAAP) āĻ
āύā§āϏāĻžāϰ⧠āĻŦāĻšāĻŋāĻāϏā§āĻĨ āĻŦā§āϝāĻŦāĻšāĻžāϰāĻāĻžāϰā§āĻĻā§āϰ āĻāύā§āϝ āĻŦā§āϝāĻŦāϏāĻžāϝāĻŧāĻŋāĻ āϞā§āύāĻĻā§āύ āĻĒāϰāĻŋāĻŽāĻžāĻĒ āĻ āϏāĻāϰāĻā§āώāĻŖ āĻāĻŦāĻ āĻāϰā§āĻĨāĻŋāĻ āĻŦāĻŋāĻŦāϰāĻŖā§ āĻĒā§āϰāϏā§āϤā§āϤ āĻāϰ⧠āĻĨāĻžāĻā§āĨ¤ āϏāĻšāĻŋāύ⧠āϤāĻžāϤā§āϤā§āĻŦāĻŋāĻ āĻ āĻĒā§āϰāĻžāϝāĻŧā§āĻāĻŋāĻ āĻšāĻŋāϏāĻžāĻŦāĻŦāĻŋāĻā§āĻāĻžāύā§āϰ āĻŽāϧā§āϝāĻāĻžāϰ āĻŦā§āĻšā§ āĻŽāϤā§āĻā§āϝ āĻšāϤ⧠āϧāĻžāϰāĻžāĻŦāĻžāĻšāĻŋāĻāĻāĻžāĻŦā§ āĻā§āĻĒāύā§āύ āĻšāϝāĻŧā§āĻā§, āϝāĻž āϏāĻŋāĻĻā§āϧāĻžāύā§āϤāĻĒā§āϰāĻŖā§āϤāĻžāĻĻā§āϰ āĻĒā§āϰāϝāĻŧā§āĻāύāĻžāύā§āϝāĻžāϝāĻŧā§ āĻāĻžāϞāĻā§āϰāĻŽā§ āĻĒāϰāĻŋāĻŦāϰā§āϤāĻŋāϤ āĻšāϝāĻŧāĨ¤
āĻāϰā§āĻĨāĻŋāĻ āĻšāĻŋāϏāĻžāĻŦāĻŦāĻŋāĻā§āĻāĻžāύā§āϰ āϏāĻžāĻšāĻžāϝā§āϝ⧠āϏāĻžāϧāĻžāϰāĻŖāϤ āĻŦāĻžā§āϏāϰāĻŋāĻ āĻŦāĻž āĻ
āϰā§āϧāĻŦāĻžā§āϏāϰāĻŋāĻ āϏāĻŽāϝāĻŧā§āϰ āĻāĻŋāϤā§āϤāĻŋāϤ⧠āĻā§āύ⧠āĻĒā§āϰāϤāĻŋāώā§āĻ āĻžāύā§āϰ āĻĒā§āϰā§āĻŦāĻāĻžāϞā§āύ āĻĒā§āϰāϤāĻŋāĻŦā§āĻĻāύ āĻĒā§āϰāϏā§āϤā§āϤ āĻāϰāĻž āĻšāϝāĻŧā§ āĻĨāĻžāĻā§āĨ¤ āϝā§āĻŽāύ, ⧍ā§Ļā§Ļā§Ŧ āϏāύ⧠āĻĒā§āϰāϏā§āϤā§āϤāĻā§āϤ āĻāϰā§āĻĨāĻŋāĻ āĻŦāĻŋāĻŦāϰāĻŖā§ āĻŦāϰā§āĻŖāύāĻž āĻāϰāĻŦ⧠⧍ā§Ļā§Ļā§Ģ āϏāύā§āϰ āĻāϰā§āĻĨāĻŋāĻ āĻ
āĻŦāϏā§āĻĨāĻžāĨ¤
āĻŦā§āϝāĻŦāϏā§āĻĨāĻžāĻĒāύāĻž āĻšāĻŋāϏāĻžāĻŦāĻŦāĻŋāĻā§āĻāĻžāύ :
āĻŦā§āϝāĻŦāϏā§āĻĨāĻžāĻĒāύāĻž āĻšāĻŋāϏāĻžāĻŦāĻŦāĻŋāĻā§āĻāĻžāύ āϏ⧠āϏāĻāϞ āϤāĻĨā§āϝāĻžāĻĻāĻŋ āĻĒāϰāĻŋāĻŽāĻžāĻĒāĻŖ, āϏāĻāϰāĻā§āώāĻŖ āĻ āĻŦāĻŋāĻŦāϰāĻŖā§āϰ āĻāĻĒāϰ āĻā§āϰā§āϤā§āĻŦāĻžāϰā§āĻĒ āĻāϰ⧠āϝā§āĻā§āϞāĻŋ āĻŦā§āϝāĻŦāϏā§āĻĨāĻžāĻĒāĻāĻĻā§āϰāĻā§ āϤāĻžāĻĻā§āϰ āĻĒā§āϰāϤāĻŋāώā§āĻ āĻžāύā§āϰ āĻāĻžāĻā§āĻā§āώāĻŋāϤ āϞāĻā§āώā§āϝ āĻ
āϰā§āĻāύā§āϰ āĻāύā§āϝ āĻĒā§āϰāϝāĻŧā§āĻāύā§āϝāĻŧ āϏāĻŋāĻĻā§āϧāĻžāύā§āϤ āĻā§āϰāĻšāĻŖā§ āϏāĻšāĻžāϝāĻŧāϤāĻž āĻāϰā§āĨ¤ āĻŦā§āϝāĻŦāϏā§āĻĨāĻžāĻĒāύāĻž āĻšāĻŋāϏāĻžāĻŦāĻŦāĻŋāĻā§āĻāĻžāύ⧠āĻŦā§āϝāϝāĻŧ-āĻāĻĒāϝā§āĻāĻŋāϤāĻž āĻŦāĻŋāĻļā§āϞā§āώāĻŖ āĻ
āύā§āϝāĻžāϝāĻŧā§ āĻ
āĻā§āϝāύā§āϤāϰā§āĻŖ āĻšāĻŋāϏāĻžāĻŦāύāĻŋāĻāĻžāĻļ āĻ āĻŦāĻŋāĻŦāϰāĻŖā§ āϤā§āϰāĻŋ āĻāϰāĻž āĻšāϝāĻŧā§ āĻĨāĻžāĻā§āĨ¤ āĻāĻā§āώā§āϤā§āϰ⧠āϏāĻšāĻŋāύ⧠āĻ
āύā§āϏāϰāĻŖ āĻāϰāĻž āĻŦāĻžāϧā§āϝāϤāĻžāĻŽā§āϞāĻ āύāϝāĻŧāĨ¤
āĻŦā§āϝāĻŦāϏā§āĻĨāĻžāĻĒāύāĻž āĻšāĻŋāϏāĻžāĻŦāĻŦāĻŋāĻā§āĻāĻžāύ āĻāĻŦāĻŋāώā§āϝ⧠āϏāĻŽāϝāĻŧā§āϰ āĻāύā§āϝ āĻŦāĻŋāĻŦāϰāĻŖā§ āĻĒā§āϰāϏā§āϤā§āϤ āĻāϰ⧠āĻĨāĻžāĻā§, āϝā§āĻŽāύ ⧍ā§Ļā§Ļā§Ŧ āϏāύā§āϰ āĻŦāĻžāĻā§āĻāĻāĻŋ ⧍ā§Ļā§Ļā§Ģ āϏāύ⧠āĻĒā§āϰāĻŖāϝāĻŧāύ āĻāϰāĻžāĻāĻž āĻ āϧāϰāύā§āϰ āĻšāĻŋāϏāĻžāĻŦāĻŦāĻŋāĻā§āĻāĻžāύā§āϰ āĻāĻžāĻāĨ¤ āĻāĻā§āώā§āϤā§āϰā§, āϏāĻŽāϝāĻŧā§āϰ āĻĒāϰāĻŋāϏā§āĻŽāĻž āĻŦā§āϝāĻžāĻĒāĻāĻāĻžāĻŦā§ āĻĒāϰāĻŋāĻŦāϰā§āϤāĻŋāϤ āĻšāϝāĻŧā§ āĻĨāĻžāĻā§āĨ¤ āĻāϰā§āĻĒ āĻŦāĻŋāĻŦā§āϤāĻŋāϤ⧠āĻāϰā§āĻĨāĻŋāĻ āĻ āĻ
āύāĻžāϰā§āĻĨāĻŋāĻ, āĻĻā§'āϧāϰāύā§āϰ āϤāĻĨā§āϝāĻ āĻĨāĻžāĻāϤ⧠āĻĒāĻžāϰ⧠āĻāĻŦāĻ āĻāĻĻāĻžāĻšāϰāĻŖāϏā§āĻŦāϰā§āĻĒ āĻŦāĻŋāĻļā§āώ āĻā§āύ⧠āĻĒāĻŖā§āϝ āĻŦāĻž āĻŦāĻŋāĻāĻžāĻā§āϰ āĻāĻĒāϰ āĻā§āϰā§āϤā§āĻŦāĻžāϰā§āĻĒ āĻāϰāĻž āĻšāϤ⧠āĻĒāĻžāϰā§āĨ¤
āύāĻŋāϰā§āĻā§āώāĻŖ :
āĻ
āύā§āϝā§āϰ āĻĻā§āĻŦāĻžāϰāĻž āϏā§āύāĻŋāĻļā§āĻāĻŋāϤ āĻāĻā§āϤāĻŋ āĻ āĻĻāĻžāĻŦāĻŋāϰ āϏāϤā§āϝāĻĒā§āϰāϤāĻŋāĻĒāĻžāĻĻāύāĻā§ āύāĻŋāϰā§āĻā§āώāĻŖ āĻŦāϞā§āĨ¤ āĻ āĻāĻžāĻāĻāĻŋāϰ āĻĒā§āϰāϤāĻŋāĻĻāĻžāύ⧠āύāĻŋāϰā§āĻā§āώāĻŖā§āϰ āĻĻāĻžāϝāĻŧāĻŋāϤā§āĻŦā§ āύāĻŋāϝāĻŧā§āĻāĻŋāϤ āĻŦā§āϝāĻā§āϤāĻŋāĻā§ āύāĻŋāϰā§āĻĻāĻŋāώā§āĻ āĻĒāϰāĻŋāĻŽāĻžāĻŖ āϏāĻŽā§āĻŽāĻžāύ⧠āĻĒā§āϰāĻĻāĻžāύ āĻāϰāĻž āĻšāϝāĻŧā§ āĻĨāĻžāĻā§āĨ¤[ā§Ģ] āĻšāĻŋāϏāĻžāĻŦāĻŦāĻŋāĻā§āĻāĻžāύā§āϰ āϧāĻžāϰāĻŖāĻžāϝāĻŧ āύāĻŋāϰā§āĻā§āώāĻŖ āĻšāϞ⧠"āĻā§āύ⧠āĻĒā§āϰāϤāĻŋāώā§āĻ āĻžāύā§āϰ āĻāϰā§āĻĨāĻŋāĻ āĻŦāĻŋāĻŦāϰāĻŖā§āϰ āĻĒāĻā§āώāĻĒāĻžāϤāĻšā§āύ āĻĒāϰā§āĻā§āώāĻŖ āĻ āϏāĻāĻā§āϝāĻžāϤā§āĻŽāĻ āĻĒāϰāĻŋāĻŽāĻžāĻĒāĻŖāĨ¤"
āĻāϰā§āĻĨāĻŋāĻ āĻŦāĻŋāĻŦāϰāĻŖā§āϰ āύāĻŋāϰā§āĻā§āώāĻžāϰ āϞāĻā§āώā§āϝ āĻšāϞ⧠āĻāϰā§āĻĨāĻŋāĻ āĻŦāĻŋāĻŦāϰāĻŖā§āĻāĻŋāϰ āϏāĻŽā§āĻĒāϰā§āĻā§ āϏā§āĻŦā§āĻā§āϤāĻŋ āĻŦāĻž āĻ
āϏā§āĻŦā§āĻā§āϤāĻŋāĻŽā§āϞāĻ āĻŽāύā§āϤāĻŦā§āϝ āĻĒā§āϰāĻāĻžāĻļ āĻāϰāĻžāĨ¤ āĻāϰā§āĻĨāĻŋāĻ āĻŦāĻŋāĻŦāϰāĻŖā§ āϝ⧠āϏā§āώā§āĻ ā§āϤāĻžāϰ āϏāĻžāĻĨā§ āϏāĻšāĻŋāύ⧠āĻ
āύā§āϝāĻžāϝāĻŧā§ āĻ "āϏāĻāϞ āĻĻā§āϰāĻŦā§āϝāĻŦāĻžāĻāĻ āĻĻāĻŋāĻ" āĻšāϤ⧠āĻā§āύ⧠āĻĒā§āϰāϤāĻŋāώā§āĻ āĻžāύ āĻŦāĻž āĻŦā§āϝāĻā§āϤāĻŋāϰ āĻāϰā§āĻĨāĻŋāĻ āĻ
āĻŦāϏā§āĻĨāĻž, āĻāĻžāϰā§āϝāĻĢāϞāĻžāĻĢāϞ, āĻ āύāĻāĻĻ āĻ
āϰā§āĻĨāĻĒā§āϰāĻŦāĻžāĻš āĻĒā§āϰāĻāĻžāĻļ āĻāϰā§, āĻāĻāĻāύ āύāĻŋāϰā§āĻā§āώāĻ āϏā§āĻāĻŋ āϏāĻŽā§āĻĒāϰā§āĻā§ āĻ
āĻāĻŋāĻŽāϤ āĻĻāĻŋāϝāĻŧā§ āĻĨāĻžāĻā§āĨ¤ āύāĻŋāϰā§āĻā§āώāĻāĻā§ āϏ⧠āϏāĻāϞ āĻā§āώā§āϤā§āϰāϏāĻŽā§āĻšāĻ āĻļāύāĻžāĻā§āϤ āĻāϰāϤ⧠āĻšāϝāĻŧ āϝ⧠āϏāĻāϞ āĻā§āώā§āϤā§āϰāĻā§āϞāĻŋāϤ⧠āϧāĻžāϰāĻžāĻŦāĻžāĻšāĻŋāĻāĻāĻžāĻŦā§ āϏāĻšāĻŋāύ⧠āĻŽā§āύ⧠āĻāϞāĻž āĻšāϝāĻŧ āύāĻŋāĨ¤[ā§]
āĻšāĻŋāϏāĻžāĻŦāĻŦāĻŋāĻā§āĻāĻžāύ āϤāĻĨā§āϝ āĻŦā§āϝāĻŦāϏā§āĻĨāĻž :
āĻā§āύ⧠āĻāĻāĻāĻŋ āĻĒā§āϰāϤāĻŋāώā§āĻ āĻžāύā§āϰ āϏāĻžāϰā§āĻŦāĻŋāĻ āϤāĻĨā§āϝ āĻĒāĻĻā§āϧāϤāĻŋāϰ āϝ⧠āĻ
āĻāĻļāĻāĻŋ āĻŦāĻŋāĻļā§āώāĻāĻžāĻŦā§ āĻĒāϰāĻŋāĻŽāĻžāĻŖāĻŦāĻžāĻāĻ āϤāĻĨā§āϝ āĻĒā§āϰāĻā§āϰāĻŋāϝāĻŧāĻžāĻāϰāĻŖā§āϰ āĻāĻĒāϰ āĻā§āϰā§āϤā§āĻŦāĻžāϰā§āĻĒ āĻāϰ⧠āϤāĻžāĻā§ āĻšāĻŋāϏāĻžāĻŦāĻŦāĻŋāĻā§āĻāĻžāύ āϤāĻĨā§āϝ āĻŦā§āϝāĻŦāϏā§āĻĨāĻž āĻŦāϞā§āĨ¤
āĻšāĻŋāϏāĻžāĻŦāĻŦāĻŋāĻā§āĻāĻžāύā§āϰ āϤāĻĨā§āϝ āĻŦā§āϝāĻŦāϏā§āĻĨāĻžāϝāĻŧ āĻĻā§āĻāĻŋ āĻĒāĻā§āώ āĻāĻĄāĻŧāĻŋāϤ āĻĨāĻžāĻā§; āϤāĻĨā§āϝ āĻĒā§āϰāϏā§āϤā§āϤāĻāĻžāϰ⧠āĻāĻŦāĻ āϤāĻĨā§āϝā§āϰ āĻŦā§āϝāĻŦāĻšāĻžāϰāĻāĻžāϰā§āĨ¤ āĻšāĻŋāϏāĻžāĻŦāĻŦāĻŋāĻā§āĻāĻžāύ āĻŦā§āϝāĻŦāϏāĻžāϝāĻŧā§āϰ āĻāĻžāώāĻž āĻšāĻŋāϏā§āĻŦā§ āĻŦāĻŋāĻāĻŋāύā§āύ āϏāĻāĻļā§āϞāĻŋāώā§āĻ āĻĒāĻā§āώā§āϰ āύāĻŋāĻāĻ āϤāĻĨā§āϝ āϏāϰāĻŦāϰāĻžāĻš āĻāĻžāĻā§ āĻŦā§āϝāĻŦāĻšā§āϤ āĻšāĻāϝāĻŧāĻžāϝāĻŧ āĻŦāϰā§āϤāĻŽāĻžāύ⧠āĻšāĻŋāϏāĻžāĻŦāĻŦāĻŋāĻā§āĻāĻžāύāĻā§ āĻāĻāĻāĻŋ āϤāĻĨā§āϝ āĻŦā§āϝāĻŦāϏā§āĻĨāĻž āĻšāĻŋāϏā§āĻŦā§ āϏāĻāĻā§āĻāĻžāϝāĻŧāĻŋāϤ āĻāϰāĻž āĻšāϝāĻŧāĨ¤ āĻšāĻŋāϏāĻžāĻŦāĻŦāĻŋāĻā§āĻāĻžāύ āϤāĻĨā§āϝā§āϰ āĻŦā§āϝāĻŦāĻšāĻžāϰāĻāĻžāϰ⧠⧍ āϧāϰāύā§āϰāĻ
āĻ
āĻā§āϝāύā§āϤāϰā§āĻŖ āĻŦā§āϝāĻŦāĻšāĻžāϰāĻāĻžāϰā§: āϝāĻžāϰāĻž āϏāĻāĻļā§āϞāĻŋāώā§āĻ āĻŦā§āϝāĻŦāϏāĻžāϝāĻŧ āĻĒā§āϰāϤāĻŋāώā§āĻ āĻžāύā§āϰ āĻŦā§āϝāĻŦāϏā§āĻĨāĻžāĻĒāύāĻž āĻ āĻŽāĻžāϞāĻŋāĻāĻžāύāĻžāϰ āĻāĻāϤāĻžāĻā§āĻā§āϤ āϤāĻžāĻĻā§āϰāĻā§ āĻ
āĻā§āϝāύā§āϤāϰā§āĻŖ āĻŦā§āϝāĻŦāĻšāĻžāϰāĻāĻžāϰ⧠āĻŦāϞāĻž āĻšāϝāĻŧāĨ¤
āĻŦāĻžāĻšā§āϝāĻŋāĻ āĻŦā§āϝāĻŦāĻšāĻžāϰāĻāĻžāϰā§: āϝāĻžāϰāĻž āĻŦā§āϝāĻŦāϏāĻžāĻĒā§āϰāϤāĻŋāώā§āĻ āĻžāύā§āϰ āϏāĻžāĻĨā§ āĻāĻĄāĻŧāĻŋāϤ āĻāĻŋāύā§āϤ⧠āĻŽāĻžāϞāĻŋāĻāĻžāύāĻž āĻāĻŦāĻ āĻŦā§āϝāĻŦāϏā§āĻĨāĻžāĻĒāύāĻžāϰ āĻ
āĻāĻļ āύāύ āϤāĻžāĻĻā§āϰāĻā§ āĻŦāĻžāĻšā§āϝāĻŋāĻ āĻŦā§āϝāĻŦāĻšāĻžāϰāĻāĻžāϰ⧠āĻŦāϞāĻž āĻšāϝāĻŧ; āϝā§āĻŽāύāĻ āĻĒāĻžāĻāύāĻžāĻĻāĻžāϰ, āĻāϰ āĻāϰā§āϤā§āĻĒāĻā§āώ, āϏāϰāĻāĻžāϰ, āύāĻŋāϰā§āĻā§āώāĻ āĻĒā§āϰāĻŽā§āĻāĨ¤
đŧđđđ¤đĒđŖđŠđđŖđ đđ§đđđĄđđŖđđđŖđ
(āĻāĻāĻžāĻāύā§āĻāĻāĻŋāĻ āĻĢā§āϰāĻŋāϞāĻžāύā§āϏāĻŋāĻ)-
āĻāĻāĻžāĻāύā§āĻāĻāĻŋāĻ āĻĢā§āϰāĻŋāϞāĻžāύā§āϏāĻŋāĻ āĻāĻŋ āĻāĻŽāĻŋ āĻāϰāϤ⧠āĻĒāĻžāϰāĻŦā§? āĻāĻāĻž āĻāϰāĻžāϰ āϝā§āĻā§āϝāϤāĻž āĻāĻŋ āĻāĻŽāĻžāϰ āĻāĻā§? āĻāĻŋ āĻāĻŋ āĻĻāϰāĻāĻžāϰ?āĻāĻŋāĻāĻžāĻŦā§ āĻļā§āϰ⧠āĻāϰāĻŦā§? āĻā§āĻĨāĻž āĻšāϤ⧠āĻļā§āϰ⧠āĻāϰāĻŦā§?
āĻāĻāĻžāĻāύā§āĻāĻāĻŋāĻ āĻĢā§āϰāĻŋāϞā§āϝāĻžāύā§āϏāĻŋāĻ āĻāϰāϤ⧠āĻāĻŽāĻžāĻĻā§āϰāĻā§ āĻā§āύ āĻŦā§ āĻŦā§ āĻĄāĻŋāĻā§āϰāĻŋāϧāĻžāϰ⧠āĻšāϤ⧠āĻšāĻŦā§ āύāĻžāĻšāĨ¤ āĻļā§āϧā§āĻŽāĻžāϤā§āϰ āĻāĻāĻžāĻāύā§āĻāĻāĻŋāĻ āĻāϰ āĻāĻĒāϰ⧠āϏāĻžāϧāĻžāϰāύ āĻā§āĻāĻžāύ āϝā§āĻŽāύāĻ āĻāĻžāĻŦā§āĻĻāĻž āĻĨā§āĻā§ āϰā§āĻā§āĻžāĻŽāĻŋāϞ āĻāĻāĻā§āĻā§āϰ āĻā§āĻāĻžāύ āϝāĻĻāĻŋ āĻĨāĻžāĻā§ āϤāĻžāĻšāϞā§āĻ āĻāĻĒāύāĻŋ āĻāĻāĻāύ āϏāĻĢāϞ āĻŦā§āĻāĻāĻŋāĻĒāĻžāϰ āĻšāϤ⧠āĻĒāĻžāϰā§āύ āĻāĻŦāĻ āϏāĻĢāϞāĻĻā§āϰ āϤāĻžāϞāĻŋāĻāĻžāĻŦāĻĻā§āϧ āĻšāϤ⧠āĻĒāĻžāϰā§āύāĨ¤ āĻāĻĒāύāĻžāĻā§ āĻļā§āϧā§āĻŽāĻžāϤā§āϰ āĻāĻŋāĻā§ āĻāύāĻĒā§āϰāĻŋā§ āĻāĻāĻžāĻāύā§āĻāĻāĻŋāĻ āϏāĻĢāĻāĻā§ā§āϝāĻžāϰ āϝā§āĻŽāύāĻđ¸đđđđđđđđđ, đđđđ,đđđđ... āĻ
āĻĒāĻžāϰā§āĻ āĻāϰāĻž āĻļāĻŋāĻāϤ⧠āĻšāĻŦā§āĨ¤
āĻŦāĻŋāϏā§āϤāĻžāϰāĻŋāϤ(āĻĒā§ā§āύā§āĻ)āĻ
*āĻāĻāĻžāĻāύā§āĻāĻāĻŋāĻ āϏāĻŽā§āĻĒāϰā§āĻā§ āϏāĻžāϧāĻžāϰāĻŖ āĻā§āĻāĻžāύ (āĻāĻžāĻŦā§āĻĻāĻž āĻĨā§āĻā§ āϰā§āĻā§āĻžāĻŽāĻŋāϞ) āĻāĻāĻā§āĻā§āϰ āϧāĻžāϰāύāĻž āϏā§āĻĒāώā§āĻ āϰāĻžāĻāϤ⧠āĻšāĻŦā§āĨ¤
* āĻāĻāĻžāĻāύā§āĻāĻāĻŋāĻ āĻāύāĻĒā§āϰāĻŋā§ āϏāĻĢāĻāĻā§ā§āϝāĻžāϰ ( Quickbooks, xero, wave, sage......) āϝā§āĻā§āύ⧠āĻā§ā§āĻžāϞāĻŋāĻāĻŋ āϏāĻŽā§āĻĒāύā§āύ āĻĒā§āϰāϤāĻŋāώā§āĻ āĻžāύ āĻšāϤ⧠āĻļāĻŋāĻāϤ⧠āĻšāĻŦā§ āϝāĻžāϤ⧠āĻŽāĻžāϰā§āĻā§āĻāĻĒā§āϞā§āϏ⧠āĻāĻžāĻ āĻāϰāĻžāϰ āĻĻāĻā§āώāϤāĻž āĻ
āϰā§āĻāύ āĻāϰāĻž āϝāĻžā§āĨ¤
*āĻāĻŽāĻŋāĻāύāĻŋāĻā§āĻļāύ āϏā§āĻāĻŋāϞ āĻĄā§āĻāϞāĻĒ āĻāϰāϤ⧠āĻšāĻŦā§ (āĻāĻĒāύāĻžāĻā§ āĻŦā§āϰāĻŋāĻāĻŋāĻļāĻĻā§āϰ āĻŽāϤ āĻāĻāϰā§āĻāĻŋ āĻŦāϞāĻž āĻļāĻŋāĻāϤ⧠āĻšāĻŦā§ āύāĻžāĻš, āĻļā§āϧ⧠āĻāĻĒāύāĻŋ āĻāĻŋ āĻŦāϞāϤ⧠āĻāĻžāύ āϏā§āĻāĻž āĻŦā§āĻāĻžāύā§āϰ āĻŽāϤ āϏā§āĻāĻŋāϞ āĻĨāĻžāĻāϞā§āĻ āĻšāĻŦā§)āĨ¤
*āĻāĻā§āϏā§āϞ⧠āĻŽāĻŋāĻĄāĻŋā§āĻžāĻŽ āϞā§āĻā§āϞā§āϰ āĻāĻā§āϏāĻĒāĻžāϰā§āĻ āĻšāϤ⧠āĻšāĻŦā§āĨ¤
* āϏāĻŦāĻā§āϝāĻŧā§ āĻŦā§ āĻāĻĨāĻž āύāĻŋāĻā§āĻā§ āϏāĻŦāϏāĻŽā§ āĻāĻĒāĻĄā§āĻ āϰāĻžāĻāϤ⧠āĻšāĻŦā§ āĻāĻŦāĻ āϧā§āϰā§āϝāĻļā§āϞ āĻšāϤ⧠āĻšāĻŦā§āĨ¤
āĻāĻŽāϰāĻž āĻŦā§āϝāĻžāĻŦāϏāĻžāϰ āĻļāĻŋāĻā§āώāĻžāϰ āĻāĻžāϤā§āϰāϰāĻž Graphic design, web design, social media marketing āĻāϰ āĻāĻĒāϰ āϏāĻŽā§ āĻĻāĻŋāϤ⧠āĻĒāĻžāϰāĻŋ āύāĻžāĨ¤ āϤāĻžāĻ āĻāĻŽāĻžāĻĻā§āϰ āĻāύā§āϝ freelancing āĻāϰāĻžāϰ āϏā§āϝā§āĻ āϰāϝāĻŧā§āĻā§, (fiverr, upwork, freelance) website āĻ Accounting freelancing āĻāĻžāĻ āĻā§āϞ⧠āĻāϰāĻž āϝāĻžāĻŦā§
#āĻāĻāĻāύ āĻāĻāĻžāĻāύā§āĻāĻāĻŋāĻ āĻĢā§āϰāĻŋāϞā§āϝāĻžāύā§āϏāĻžāϰ āĻšāĻŋāϏā§āĻŦā§ āĻāĻĒāύāĻžāĻā§ āϝāĻž āϝāĻž āĻāϰāϤ⧠āĻšāϤ⧠āĻĒāĻžāϰā§(āĻĻāĻžā§āĻŋāϤā§āĻŦ) -
*đĒđđđđđđ đđđđđđđđđđđ đđđđ đđđđđđđđđđ đđđđđđđđ.
*đŦđđđđđ đđđđđđđđđđđ đđ đđđđđđđđ & đđđđđđđđđ đđđđđđđđ.
*đˇđđđđđđ đđđ
đđđđ
*đˇđđđđđđ đđđđđđđđ đđđđ đđđđđđ
*đēđđđ
đđđđđđđđ đđ đđđđđđđđ đŦđđđđđđ đđđđđđđ đđđđđ đđđđ đđđđđđđđ
*đēđđđ đđ-đđ-đ
đđđ đđ đđđđđ đđđ
đđđđđ đđđ đđđđ
*đŊđđ & đģđđ
*đšđđđđđ
đđđđđđđđ đđđ
đ
đđđđđđđđđđđđ
*đđđđđđđ
*đĒđđđđ đđ & đđđđđđ đđ & đđđ.
#āĻāĻāĻžāĻāύā§āĻāĻāĻŋāĻ āĻĢā§āϰāĻŋāϞāĻžāύā§āϏāĻžāϰ āĻšāĻŋāϏā§āĻŦā§ āĻāĻĒāύāĻŋ āĻā§āĻŽāύ āĻā§ āĻāϰāϤ⧠āĻĒāĻžāϰā§āύāĻ
āĻāĻĒāύāĻžāϰ āϝāĻĻāĻŋ āϏā§āĻāĻŋāϞ āĻĨāĻžāĻā§ āĻāĻĒāύāĻŋ āĻ
āĻŦāĻļā§āϝāĻ āĻā§ āĻāϰāϤ⧠āĻĒāĻžāϰāĻŦā§āύ (āϝāĻž āĻāĻĒāύāĻžāϰ āϰāĻŋāĻāĻŋāĻā§ āĻŦāĻŋāĻĻā§āϝāĻŽāĻžāύ)āĨ¤ āĻā§ā§ āĻĻā§āĻāĻž āϝāĻžā§, āĻā§āύāĻŋā§āϰ āĻāĻāĻāύ āĻĢā§āϰāĻŋāϞāĻžāύā§āϏāĻžāϰ āĻĒā§āϰāϤāĻŋ āĻāύā§āĻāĻžā§ āĻā§ āĻāϰā§āύ $⧍ā§Ļ-$ā§Ēā§Ļ, āĻāĻāĻāύ āϏāĻŋāύāĻŋā§āϰ āĻĢā§āϰāĻŋāϞāĻžāύā§āϏāĻžāϰ $ā§Šā§Ļ-$ā§Ģā§Ļ, āĻāϰ āĻāĻĒāύāĻŋ āϝāĻĻāĻŋ āĻ āϏā§āĻā§āĻāϰ⧠āĻļā§āϰā§āώ⧠āĻĨāĻžāĻāϤ⧠āĻĒāĻžāϰā§āύ āϤāĻžāĻšāϞ⧠āĻāύā§āĻāĻžā§ $ā§Ŧā§Ļ-$ā§§ā§Ģā§Ļ āĻā§ āĻāϰāϤ⧠āĻĒāĻžāϰā§āύāĨ¤
āĻāϰ āĻšā§āϝāĻž āĻŦāĻžāĻāϞāĻžāĻĻā§āĻļ āĻĨā§āĻā§āĻ āĻ
āύā§āĻā§ āϏāĻžāĻĢāϞā§āϝā§āϰ āĻļā§āϰā§āώ⧠āϰā§ā§āĻā§āύāĨ¤ āĻāĻŦāĻžāϰ āĻāĻ āϏā§āĻā§āĻāϰ⧠āĻāĻĒ āϰā§āĻā§āĻĄā§āϰ āĻŽāϧā§āϝ⧠āĻŦāĻžāĻāϞāĻžāĻĻā§āĻļā§āϰ āϤāĻŋāύāĻāύ āϰā§ā§āĻā§āύ, "āĻāϞāĻšāĻžāĻŽāĻĻā§āϞāĻŋāϞā§āϞāĻžāĻš "â¤ī¸
āĻāĻĒāύāĻŋ āĻāĻŽāĻŋāĻ āĻāĻĻā§āϰ āĻŽāϧā§āϝ⧠āĻāĻāĻāύ āĻšāϤ⧠āĻĒāĻžāϰāĻŋāĨ¤
Accounting -01, life of Luca pacioli.
Luca Pacioli
Fra Luca Bartolomeo de Pacioli (sometimes Paccioli or Paciolo; c. 1447 â 19 June 1517)was an Italian mathematician, Franciscan friar, collaborator with Leonardo da Vinci, and an early contributor to the field now known as accounting. He is referred to as "The Father of Accounting and Bookkeeping" in Europe and he was the second person to publish a work on the double-entry system of book-keeping on the continent.He was also called Luca di Borgo after his birthplace, Borgo Sansepolcro, Tuscany.
Luca Pacioli
Portrait of Luca Pacioli
Portrait of Luca Pacioli, traditionally attributed to Jacopo de' Barbari, 1495[1]
Born: c. 1447
Sansepolcro, Republic of Florence
Died: 19 June 1517 (aged 69â70)
Sansepolcro, Republic of Florence
Citizenship: Florentine
Occupation: Friar, mathematician, writer
Known for:
Summa de arithmetica,
Divina proportione,
double-entry bookkeeping
Life:
A woodcut of Pacioli which appears throughout the Summa de arithmetica[5]
Luca Pacioli was born between 1446 and 1448 in the Tuscan town of Sansepolcro where he received an abbaco education. This was education in the vernacular (i.e., the local tongue) rather than Latin and focused on the knowledge required of merchants. His father was Bartolomeo Pacioli; however, Luca Pacioli was said to have lived with the Befolci family as a child in his birth town Sansepolcro.He moved to Venice around 1464, where he continued his own education while working as a tutor to the three sons of a merchant. It was during this period that he wrote his first book, a treatise on arithmetic for the boys he was tutoring. Between 1472 and 1475, he became a Franciscan friar.Thus, he could be referred to as Fra ('Friar') Luca.
In 1475, he started teaching in Perugia as a private teacher before becoming first chair in mathematics in 1477. During this time, he wrote a comprehensive textbook in the vernacular for his students. He continued to work as a private tutor of mathematics and was instructed to stop teaching at this level in Sansepolcro in 1491. In 1494, his first book, Summa de arithmetica, geometria, Proportioni et proportionalita, was published in Venice. In 1497, he accepted an invitation from Duke Ludovico Sforza to work in Milan. There he met, taught mathematics to, collaborated, and lived with Leonardo da Vinci. In 1499, Pacioli and Leonardo were forced to flee Milan when Louis XII of France seized the city and drove out their patron. Their paths appear to have finally separated around 1506. Pacioli died at about the age of 70 on 19 June 1517, most likely in Sansepolcro, where it is thought that he had spent much of his final years.
Mathematics:
The first printed illustration of a rhombicuboctahedron, by Leonardo da Vinci, published in Divina proportione
Woodcut illustrating the proportions of the human face from the second part of Divina proportione, which covers the Vitruvian system
Further information: Mathematics and art
Pacioli published several works on mathematics, including:
Tractatus mathematicus ad discipulos perusinos (Ms. Vatican Library, Lat. 3129), a nearly 600-page textbook dedicated to his students at the University of Perugia where Pacioli taught from 1477 to 1480. The manuscript was written between December 1477 and 29 April 1478. It contains 16 sections on merchant arithmetic, such as barter, exchange, profit, mixing metals, and algebra, though 25 pages from the chapter on algebra are missing. A modern transcription was published by Calzoni and Cavazzoni (1996) along with a partial translation of the chapter on partitioning problems.
Summa de arithmetica, geometria. Proportioni et proportionalita (Venice 1494), a textbook for use in the schools of Northern Italy. It was a synthesis of the mathematical knowledge of his time and contained the first printed work on algebra written in the vernacular (i.e., the spoken language of the day). It is also notable for including one of the first published descriptions of the bookkeeping method that Venetian merchants used during the Italian Renaissance, known as the double-entry accounting system. The system he published included most of the accounting cycle as we know it today. He described the use of journals and ledgers and warned that a person should not go to sleep at night until the debits equalled the credits. His ledger had accounts for assets (including receivables and inventories), liabilities, capital, income, and expenses â the account categories that are reported on an organization's balance sheet and income statement, respectively. He demonstrated year-end closing entries and proposed that a trial balance be used to prove a balanced ledger. Additionally, his treatise touches on a wide range of related topics from accounting ethics to cost accounting. He introduced the Rule of 72, using an approximation of 100*ln 2 more than 100 years before Napier and Briggs.
De viribus quantitatis (Ms. Università degli Studi di Bologna, 1496â1508), a treatise on mathematics and magic. Written between 1496 and 1508, it contains the first reference to card tricks as well as guidance on how to juggle, eat fire, and make coins dance. It is the first work to note that Leonardo was left-handed. De viribus quantitatis is divided into three sections: Mathematical problems, puzzles, and tricks, along with a collection of proverbs and verses. The book has been described as the "Foundation of modern magic and numerical puzzles," but it was never published and sat in the archives of the University of Bologna, where it was seen by only a small number of scholars during the Middle Ages. The book was rediscovered after David Singmaster, a mathematician, came across a reference to it in a 19th-century manuscript. An English translation was published for the first time in 2007.
Geometry (1509), a Latin translation of Euclid's Elements.
Divina proportione (written in Milan in 1496â98, published in Venice in 1509). Two versions of the original manuscript are extant, one in the Biblioteca Ambrosiana in Milan, the other in the Bibliothèque Publique et Universitaire in Geneva. The subject was mathematical and artistic proportion, especially the mathematics of the golden ratio and its application in architecture. Leonardo da Vinci drew the illustrations of the regular solids in Divina proportione while he lived with and took mathematics lessons from Pacioli. Leonardo's drawings are probably the first illustrations of skeletal solids, which allowed an easy distinction between front and back. The work also discusses the use of perspective by painters such as Piero della Francesca, Melozzo da ForlÃŦ, and Marco Palmezzano.
Translation of Piero della Francesca's work Edit
The majority of the second volume of Summa de arithmetica, geometria. Proportioni et proportionalita was a slightly rewritten version of one of Piero della Francesca's works. The third volume of Pacioli's Divina proportione was an Italian translation of Piero della Francesca's Latin book De quinque corporibus regularibus. In neither case did Pacioli include an attribution to Piero. He was severely criticized for this and accused of plagiarism by sixteenth-century art historian and biographer Giorgio Vasari. R. Emmett Taylor (1889â1956) said that Pacioli may have had nothing to do with the translated volume Divina proportione, and that it may just have been appended to his work. However, no such defense can be presented concerning the inclusion of Piero della Francesca's material in Pacioli's Summa.
Impact on accounting and business:
Pacioli dramatically affected the practice of accounting by describing the double-entry accounting method used in parts of Italy. This revolutionized how businesses oversaw their operations, enabling improved efficiency and profitability. The Summa's section on accounting was used internationally as an accounting textbook up to the mid-16th century. The essentials of double-entry accounting have for the most part remained unchanged for over 500 years. "Accounting practitioners in public accounting, industry, and not-for-profit organizations, as well as investors, lending institutions, business firms, and all other users for financial information are indebted to Luca Pacioli for his monumental role in the development of accounting."
The ICAEW Library's rare book collection at Chartered Accountants' Hall holds the complete published works of Luca Pacioli. Sections of two of Pacioli's books, 'Summa de arithmetica' and 'Divina proportione' can be viewed online using Turning the Pages, an interactive tool developed by the British Library.
Chess:
Luca Pacioli also wrote an unpublished treatise on chess, De ludo scachorum (On the Game of Chess). Long thought to have been lost, a surviving manuscript was rediscovered in 2006, in the 22,000-volume library of Count Guglielmo Coronini-Cronberg in Gorizia. A facsimile edition of the book was published in Pacioli's home town of Sansepolcro in 2008. Based on Leonardo da Vinci's long association with the author and his having illustrated Divina proportione, some scholars speculate that Leonardo either drew the chess problems that appear in the manuscript or at least designed the chess pieces used in the problems.
Source : Wikipedia