Irish Science Academy

Irish Science Academy

Founded in 2007

13/04/2019

Black hole cha photo kadhala tari tras...








21/12/2018

Stunning Photos Show Huge Crater on Mars Absolutely Brimming With Water Ice

While the presence of liquid water on Mars remains an ongoing topic of intense interest, we know that there is plenty of water ice adorning the Red Planet - and boy can it ever look amazing, as new images from the European Space Agency's Mars Express attest.

The Mars orbiter has obtained a stunning view of a feature called the Korolev crater, an 81.4-kilometre (50.6-mile) diameter crater just south of the Olympia Undae dunes circling the northern polar cap. The crater is filled almost to the brim with pristine ice year-round. Like Earth, Mars does have seasons. And like Earth, the warmer seasons result in receding ice. But Korolev crater, created by a massive impact sometime in Mars's distant past, and named for Soviet rocket engineer Sergei Korolev, is a bit of an oddball.

It's a type of geological feature known as a 'cold trap', and that's exactly what it sounds like. The floor of the crater is very deep, just over 2 kilometres (1.2 miles) below the rim. From the floor of the crater rises a dome of water ice, 1.8 km (1.1 miles) thick and up to 60 km (37.3 miles) in diameter. In volume, it contains around 2,200 cubic kilometres (528 cubic miles) of ice (although an unknown proportion of it is probably Mars dust).

When air travels over the ice (yes, Mars has air - it's unbreathable and thin, but it's there), it cools and sinks, resulting in a layer of cold air that sits directly above the ice. Since air is a poor conductor of heat, this cold layer acts as an insulator that protects the ice from warmer air, and therefore keeping it from melting. The same dynamic is at play in the much smaller 36-kilometre (22.4-mile) Louth crater, also in the northern polar region of Mars.

Mars Express - which celebrates its 15th anniversary in Martian orbit on December 25 - made several passes over Korolev crater last year, taking image strips with its DSLR High Resolution Stereo Camera (HRSC). Five of these strips were stitched together to create this image. They were also used to create a colour-coded topographic map which shows the elevations of the crater and surrounding plain.

Credits: ESA (European Space Agency) & www.sciencealert.com

28/11/2018

OK we are the Irish Academy so a quick word on waste, recycling, global warming and climate change, from a science/common sence/geo political angle.
Our planet is getting warmer. Everything is relative as we know so, the amount its warming by can be said to be minute or huge. From a, perspective taking in a billion years or so given the temperature changes within said period then its tiny. From the, humans are precious and a tiny change could harm their continued life as they know it on the planet perspective, then its huge.
What perspective are you inclined to employ?

25/11/2018

Mars with water.

13/11/2017

The Irish Science Academy is now ten years old. This being science week we want to officially announce that the 'Bing Bang' actually never happened. So, forget all you know and start from scratch. How did it all begin, did it begin? Where is the the edge? Is there an edge? Can there be?
Don't be burdened with what you think is known. No wrong answers, there are no limits, enjoy working it out!

19/10/2016

The ultimate small, the ultimate big. The Irish Science Academy explores everything in between and everything outside...everything. What have you a question about? Best questions and subsequent answers will be examined.

A Ping from the Cosmos 26/02/2016

A Ping from the Cosmos It's as if someone in a galaxy far, far away rang a loud bell. Could it be a signal from aliens trying to get in touch? Or is it something hitherto unk...

Gravity Waves and ET 21/02/2016

Gravity Waves and ET The other shoe has dropped. After a century of speculation and a half-century of searching, science teams using instruments built by Caltech and MIT have made a discovery that will take up permane...

Register for the MELiSSA Workshop 10/02/2016

Register for the MELiSSA Workshop The MELiSSA Workshop from 8.-9. June in Lausanne is an open platform to share and discuss challenges, results and future research of the various MELiSSA scientific domains. Scientists not involved in MELiSSA research are invited to present their work in preparation for future collaborati…

Photos from ESO Astronomy's post 12/11/2015
Timeline photos 01/10/2015

You can grasp the dimension of the European Extremely Large Telescope (E-ELT) by looking at the cars nearby. Pretty impressive, isn't it?
Image credit: ESO Astronomy / L.Calcada http://socsi.in/mlNFq

29/09/2015
NASA's Big Mars Story 29/09/2015

NASA's Big Mars Story Every time NASA ballyhoos a press conference to announce an exciting discovery about Mars, the public bets heavily that the news will either be about water (What, again?) or life (Finally!) This week

Armagh Observatory 08/03/2015

Armagh Observatory A view of the development of the 20 March 2015 partial eclipse, as seen from Northern Ireland, using images extracted from the excellent UKHO website. Click to enlarge.

07/03/2015
13/02/2015
09/02/2015

NB; Nobody knows how the Universe, Time, Life began...or how it will end. Your guess is as good as any...isn't it???

Timeline photos 05/02/2015

Tomorrow night Friday Jupiter will be at its peak...in line with us (earth) and the Sun. Here is what we would look like if we were positioned beside our near neighbour.

05/02/2015

A few words on Science...

We live in an age when all manner of scientific knowledge—from climate change to vaccinations—faces furious opposition.
Some even have doubts about the moon landing.

There’s a scene in Stanley Kubrick’s comic masterpiece Dr. Strangelove in which Jack D. Ripper, an American general who’s gone rogue and ordered a nuclear attack on the Soviet Union, unspools his paranoid worldview—and the explanation for why he drinks “only distilled water, or rainwater, and only pure grain alcohol”—to Lionel Mandrake, a dizzy-with-anxiety group captain in the Royal Air Force.

Ripper: Have you ever heard of a thing called fluoridation? Fluoridation of water?

Mandrake: Ah, yes, I have heard of that, Jack. Yes, yes.

Ripper: Well, do you know what it is?

Mandrake: No. No, I don’t know what it is. No.

Ripper: Do you realize that fluoridation is the most monstrously conceived and dangerous communist plot we have ever had to face?

The movie came out in 1964, by which time the health benefits of fluoridation had been thoroughly established, and antifluoridation conspiracy theories could be the stuff of comedy. So you might be surprised to learn that, half a century later, fluoridation continues to incite fear and paranoia. In 2013 citizens in Portland, Oregon, one of only a few major American cities that don’t fluoridate their water, blocked a plan by local officials to do so. Opponents didn’t like the idea of the government adding “chemicals” to their water. They claimed that fluoride could be harmful to human health.

Actually fluoride is a natural mineral that, in the weak concentrations used in public drinking water systems, hardens tooth enamel and prevents tooth decay—a cheap and safe way to improve dental health for everyone, rich or poor, conscientious brusher or not. That’s the scientific and medical consensus.

To which some people in Portland, echoing antifluoridation activists around the world, reply: We don’t believe you.

We live in an age when all manner of scientific knowledge—from the safety of fluoride and vaccines to the reality of climate change—faces organized and often furious opposition. Empowered by their own sources of information and their own interpretations of research, doubters have declared war on the consensus of experts. There are so many of these controversies these days, you’d think a diabolical agency had put something in the water to make people argumentative. And there’s so much talk about the trend these days—in books, articles, and academic conferences—that science doubt itself has become a pop-culture meme. In the recent movie Interstellar, set in a futuristic, downtrodden America where NASA has been forced into hiding, school textbooks say the Apollo moon landings were faked.

In a sense all this is not surprising. Our lives are permeated by science and technology as never before. For many of us this new world is wondrous, comfortable, and rich in rewards—but also more complicated and sometimes unnerving. We now face risks we can’t easily analyze.

We’re asked to accept, for example, that it’s safe to eat food containing genetically modified organisms (GMOs) because, the experts point out, there’s no evidence that it isn’t and no reason to believe that altering genes precisely in a lab is more dangerous than altering them wholesale through traditional breeding. But to some people the very idea of transferring genes between species conjures up mad scientists running amok—and so, two centuries after Mary Shelley wrote Frankenstein, they talk about Frankenfood.

The world crackles with real and imaginary hazards, and distinguishing the former from the latter isn’t easy. Should we be afraid that the Ebola virus, which is spread only by direct contact with bodily fluids, will mutate into an airborne superplague? The scientific consensus says that’s extremely unlikely: No virus has ever been observed to completely change its mode of transmission in humans, and there’s zero evidence that the latest strain of Ebola is any different. But type “airborne Ebola” into an Internet search engine, and you’ll enter a dystopia where this virus has almost supernatural powers, including the power to kill us all.

In this bewildering world we have to decide what to believe and how to act on that. In principle that’s what science is for. “Science is not a body of facts,” says geophysicist Marcia McNutt, who once headed the U.S. Geological Survey and is now editor of Science, the prestigious journal. “Science is a method for deciding whether what we choose to believe has a basis in the laws of nature or not.” But that method doesn’t come naturally to most of us. And so we run into trouble, again and again.

The trouble goes way back, of course. The scientific method leads us to truths that are less than self-evident, often mind-blowing, and sometimes hard to swallow. In the early 17th century, when Galileo claimed that the Earth spins on its axis and orbits the sun, he wasn’t just rejecting church doctrine. He was asking people to believe something that defied common sense—because it sure looks like the sun’s going around the Earth, and you can’t feel the Earth spinning. Galileo was put on trial and forced to recant. Two centuries later Charles Darwin escaped that fate. But his idea that all life on Earth evolved from a primordial ancestor and that we humans are distant cousins of apes, whales, and even deep-sea mollusks is still a big ask for a lot of people. So is another 19th-century notion: that carbon dioxide, an invisible gas that we all exhale all the time and that makes up less than a tenth of one percent of the atmosphere, could be affecting Earth’s climate.

Even when we intellectually accept these precepts of science, we subconsciously cling to our intuitions—what researchers call our naive beliefs. A recent study by Andrew Shtulman of Occidental College showed that even students with an advanced science education had a hitch in their mental gait when asked to affirm or deny that humans are descended from sea animals or that Earth goes around the sun. Both truths are counterintuitive. The students, even those who correctly marked “true,” were slower to answer those questions than questions about whether humans are descended from tree-dwelling creatures (also true but easier to grasp) or whether the moon goes around the Earth (also true but intuitive). Shtulman’s research indicates that as we become scientifically literate, we repress our naive beliefs but never eliminate them entirely. They lurk in our brains, chirping at us as we try to make sense of the world.

Most of us do that by relying on personal experience and anecdotes, on stories rather than statistics. We might get a prostate-specific antigen test, even though it’s no longer generally recommended, because it caught a close friend’s cancer—and we pay less attention to statistical evidence, painstakingly compiled through multiple studies, showing that the test rarely saves lives but triggers many unnecessary surgeries. Or we hear about a cluster of cancer cases in a town with a hazardous waste dump, and we assume pollution caused the cancers. Yet just because two things happened together doesn’t mean one caused the other, and just because events are clustered doesn’t mean they’re not still random.

We have trouble digesting randomness; our brains crave pattern and meaning. Science warns us, however, that we can deceive ourselves. To be confident there’s a causal connection between the dump and the cancers, you need statistical analysis showing that there are many more cancers than would be expected randomly, evidence that the victims were exposed to chemicals from the dump, and evidence that the chemicals really can cause cancer.

Even for scientists, the scientific method is a hard discipline. Like the rest of us, they’re vulnerable to what they call confirmation bias—the tendency to look for and see only evidence that confirms what they already believe. But unlike the rest of us, they submit their ideas to formal peer review before publishing them. Once their results are published, if they’re important enough, other scientists will try to reproduce them—and, being congenitally skeptical and competitive, will be very happy to announce that they don’t hold up. Scientific results are always provisional, susceptible to being overturned by some future experiment or observation. Scientists rarely proclaim an absolute truth or absolute certainty. Uncertainty is inevitable at the frontiers of knowledge.

Sometimes scientists fall short of the ideals of the scientific method. Especially in biomedical research, there’s a disturbing trend toward results that can’t be reproduced outside the lab that found them, a trend that has prompted a push for greater transparency about how experiments are conducted. Francis Collins, the director of the National Institutes of Health, worries about the “secret sauce”—specialized procedures, customized software, quirky ingredients—that researchers don’t share with their colleagues. But he still has faith in the larger enterprise.

“Science will find the truth,” Collins says. “It may get it wrong the first time and maybe the second time, but ultimately it will find the truth.” That provisional quality of science is another thing a lot of people have trouble with. To some climate change skeptics, for example, the fact that a few scientists in the 1970s were worried (quite reasonably, it seemed at the time) about the possibility of a coming ice age is enough to discredit the concern about global warming now.

Last fall the Intergovernmental Panel on Climate Change, which consists of hundreds of scientists operating under the auspices of the United Nations, released its fifth report in the past 25 years. This one repeated louder and clearer than ever the consensus of the world’s scientists: The planet’s surface temperature has risen by about 1.5 degrees Fahrenheit in the past 130 years, and human actions, including the burning of fossil fuels, are extremely likely to have been the dominant cause of the warming since the mid-20th century. Many people in the United States—a far greater percentage than in other countries—retain doubts about that consensus or believe that climate activists are using the threat of global warming to attack the free market and industrial society generally. Senator James Inhofe of Oklahoma, one of the most powerful Republican voices on environmental matters, has long declared global warming a hoax.

The idea that hundreds of scientists from all over the world would collaborate on such a vast hoax is laughable—scientists love to debunk one another. It’s very clear, however, that organizations funded in part by the fossil fuel industry have deliberately tried to undermine the public’s understanding of the scientific consensus by promoting a few skeptics.

The news media give abundant attention to such mavericks, naysayers, professional controversialists, and table thumpers. The media would also have you believe that science is full of shocking discoveries made by lone geniuses. Not so. The (boring) truth is that it usually advances incrementally, through the steady accretion of data and insights gathered by many people over many years. So it has been with the consensus on climate change. That’s not about to go p**f with the next thermometer reading.

But industry PR, however misleading, isn’t enough to explain why only 40 percent of Americans, according to the most recent poll from the Pew Research Center, accept that human activity is the dominant cause of global warming.

The “science communication problem,” as it’s blandly called by the scientists who study it, has yielded abundant new research into how people decide what to believe—and why they so often don’t accept the scientific consensus. It’s not that they can’t grasp it, according to Dan Kahan of Yale University. In one study he asked 1,540 Americans, a representative sample, to rate the threat of climate change on a scale of zero to ten. Then he correlated that with the subjects’ science literacy. He found that higher literacy was associated with stronger views—at both ends of the spectrum. Science literacy promoted polarization on climate, not consensus. According to Kahan, that’s because people tend to use scientific knowledge to reinforce beliefs that have already been shaped by their worldview.

Americans fall into two basic camps, Kahan says. Those with a more “egalitarian” and “communitarian” mind-set are generally suspicious of industry and apt to think it’s up to something dangerous that calls for government regulation; they’re likely to see the risks of climate change. In contrast, people with a “hierarchical” and “individualistic” mind-set respect leaders of industry and don’t like government interfering in their affairs; they’re apt to reject warnings about climate change, because they know what accepting them could lead to—some kind of tax or regulation to limit emissions.

In the U.S., climate change somehow has become a litmus test that identifies you as belonging to one or the other of these two antagonistic tribes. When we argue about it, Kahan says, we’re actually arguing about who we are, what our crowd is. We’re thinking, People like us believe this. People like that do not believe this. For a hierarchical individualist, Kahan says, it’s not irrational to reject established climate science: Accepting it wouldn’t change the world, but it might get him thrown out of his tribe.

“Take a barber in a rural town in South Carolina,” Kahan has written. “Is it a good idea for him to implore his customers to sign a petition urging Congress to take action on climate change? No. If he does, he will find himself out of a job, just as his former congressman, Bob Inglis, did when he himself proposed such action.”

Science appeals to our rational brain, but our beliefs are motivated largely by emotion, and the biggest motivation is remaining tight with our peers. “We’re all in high school. We’ve never left high school,” says Marcia McNutt. “People still have a need to fit in, and that need to fit in is so strong that local values and local opinions are always trumping science. And they will continue to trump science, especially when there is no clear downside to ignoring science.”

Meanwhile the Internet makes it easier than ever for climate skeptics and doubters of all kinds to find their own information and experts. Gone are the days when a small number of powerful institutions—elite universities, encyclopedias, major news organizations, even National Geographic—served as gatekeepers of scientific information. The Internet has democratized information, which is a good thing. But along with cable TV, it has made it possible to live in a “filter bubble” that lets in only the information with which you already agree.

How to pe*****te the bubble? How to convert climate skeptics? Throwing more facts at them doesn’t help. Liz Neeley, who helps train scientists to be better communicators at an organization called Compass, says that people need to hear from believers they can trust, who share their fundamental values. She has personal experience with this. Her father is a climate change skeptic and gets most of his information on the issue from conservative media. In exasperation she finally confronted him: “Do you believe them or me?” She told him she believes the scientists who research climate change and knows many of them personally. “If you think I’m wrong,” she said, “then you’re telling me that you don’t trust me.” Her father’s stance on the issue softened. But it wasn’t the facts that did it.

If you’re a rationalist, there’s something a little dispiriting about all this. In Kahan’s descriptions of how we decide what to believe, what we decide sometimes sounds almost incidental. Those of us in the science-communication business are as tribal as anyone else, he told me. We believe in scientific ideas not because we have truly evaluated all the evidence but because we feel an affinity for the scientific community. When I mentioned to Kahan that I fully accept evolution, he said, “Believing in evolution is just a description about you. It’s not an account of how you reason.”

Maybe—except that evolution actually happened. Biology is incomprehensible without it. There aren’t really two sides to all these issues. Climate change is happening. Vaccines really do save lives. Being right does matter—and the science tribe has a long track record of getting things right in the end. Modern society is built on things it got right.

Doubting science also has consequences. The people who believe vaccines cause autism—often well educated and affluent, by the way—are undermining “herd immunity” to such diseases as whooping cough and measles. The anti-vaccine movement has been going strong since the prestigious British medical journal the Lancet published a study in 1998 linking a common vaccine to autism. The journal later retracted the study, which was thoroughly discredited. But the notion of a vaccine-autism connection has been endorsed by celebrities and reinforced through the usual Internet filters. (Anti-vaccine activist and actress Jenny McCarthy famously said on the Oprah Winfrey Show, “The University of Google is where I got my degree from.”)

In the climate debate the consequences of doubt are likely global and enduring. In the U.S., climate change skeptics have achieved their fundamental goal of halting legislative action to combat global warming. They haven’t had to win the debate on the merits; they’ve merely had to fog the room enough to keep laws governing greenhouse gas emissions from being enacted.

Some environmental activists want scientists to emerge from their ivory towers and get more involved in the policy battles. Any scientist going that route needs to do so carefully, says Liz Neeley. “That line between science communication and advocacy is very hard to step back from,” she says. In the debate over climate change the central allegation of the skeptics is that the science saying it’s real and a serious threat is politically tinged, driven by environmental activism and not hard data. That’s not true, and it slanders honest scientists. But it becomes more likely to be seen as plausible if scientists go beyond their professional expertise and begin advocating specific policies.

It’s their very detachment, what you might call the cold-bloodedness of science, that makes science the killer app. It’s the way science tells us the truth rather than what we’d like the truth to be. Scientists can be as dogmatic as anyone else—but their dogma is always wilting in the hot glare of new research. In science it’s not a sin to change your mind when the evidence demands it. For some people, the tribe is more important than the truth; for the best scientists, the truth is more important than the tribe.

Scientific thinking has to be taught, and sometimes it’s not taught well, McNutt says. Students come away thinking of science as a collection of facts, not a method. Shtulman’s research has shown that even many college students don’t really understand what evidence is. The scientific method doesn’t come naturally—but if you think about it, neither does democracy. For most of human history neither existed. We went around killing each other to get on a throne, praying to a rain god, and for better and much worse, doing things pretty much as our ancestors did.

Now we have incredibly rapid change, and it’s scary sometimes. It’s not all progress. Our science has made us the dominant organisms, with all due respect to ants and blue-green algae, and we’re changing the whole planet. Of course we’re right to ask questions about some of the things science and technology allow us to do. “Everybody should be questioning,” says McNutt. “That’s a hallmark of a scientist. But then they should use the scientific method, or trust people using the scientific method, to decide which way they fall on those questions.” We need to get a lot better at finding answers, because it’s certain the questions won’t be getting any simpler.

01/02/2015

1015 – early works on optics by Ibn al-Haytham;
1815 – light as a wave proposed by Fresnel;
1865 – Maxwell’s electromagnetic theory of light;
1915 – Einstein’s theory of general relativity;
1965 – cosmic microwave background (Penzias and Wilson); transmission of light in optical fibres (Kao)
Just some of the anniversary's and why this year is the International year of light.

28/01/2015

Dawkins and Krauss to give talk in Trinity on the 24th Feb. Are their talks science or philosophy? What do you think they think?

25/01/2015

Space and time. Remember that...not Spacetime Space-time or anything that suggests they are the same or can be the same. Just for future reference.

Timeline photos 25/01/2015

Possible planet(s) beyond the Kuiper belt on the outskirts of this solar system.
Well its so far away and in an area we have never seen into but yes, planets may be there. So far though that's all it really is...somebody saying that yes there may be something there.

Timeline photos 08/12/2014

You guys, big stuff going on! The first Orion test flight is December 4th at 7am EST - and there is a mission overview event live on NASA TV right NOW (1pm EST). http://www.nasa.gov/nasatv

What is Orion and why should you be excited?

NASA is developing the Orion spacecraft to send humans to deep space destinations. Before astronauts travel in Orion, Thursday’s uncrewed flight test is designed to test the vehicle’s systems. The flight test provides NASA the opportunity to capitalize on an expected large amount of public interest to convey the agency’s progress toward sending humans farther into the solar system.

Launch is at 7:05 a.m. EST Thursday, Dec 4. Splashdown is 11:29 a.m. EST. The NASA TV broadcast begins at 4:30 a.m. EST.
http://www.nasa.gov/nasatv

The spacecraft will launch atop a United Launch Alliance (ULA) Delta IV Heavy rocket from Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. During its two-orbit, 4.5-hour flight, Orion will venture 3,600 miles in altitude and travel nearly 60,000 miles before returning to Earth for a splashdown in the Pacific Ocean.

For more information on Orion and Thursday’s test flight, visit: http://www.nasa.gov/orion

Want your school to be the top-listed School/college?

Website